Metallic antitumor drugs with heterocyclic ligands, such as novel AMI (amino methyl imidazole) complexes [Pd(AMI)Cl2](1), [Cu(AMI)L1](2), and [Cu(AMI)L2·2H2O](3) where L1 = oxalate and L2 = malonate, were synthesized and characterized. Assessments included elemental analyses, mass spectrometry, Fourier transform-infrared spectroscopy, ultraviolet–visible spectroscopy, and thermal analysis. The cytotoxicity of AMI complexes compared to cisplatin was assessed using MTT (3-[4,5-dimethylthiazol-2-yl] 2,5diphenyl tetrazolium bromide) assay with breast (MCF-7) and cervical (HeLa) cancer cell lines. After treating these cells with the AMI complexes' IC50 values for 48 h, malondialdehyde levels and catalase activity were used to assess oxidative stress, antioxidant activity was evaluated with DPPH radical scavenging method, comet assays assessed DNA damage, and DNA fragmentation was evaluated using the gel electrophoresis. In vitro, antimicrobial activity was assessed using a disc diffusion method. The anticancer activity results showed that IC50 (half-maximal inhibitory concentration) values of complex one, two, and three against MCF-7 and HeLa cancer cells are 0.156 ± 0.0006, 0.125 ± 0.001, 0.277 ± 0.002 μM respectively for MCF-7 cells and 0.222 ± 0.0005, 0.126 ± 0.0009, 0.152 ± 0.001 μM respectively for HeLa cells. Complex two demonstrated strong anticancer activity against MCF-7 and Hela cells. The study of oxidative stress parameters revealed that Malondialdehyde levels increased in cancer cell lines treated with complexes compared to untreated cells. Catalase activity decreased in cells treated with palladium chelate. The DPPH radical scavenging assay results identified that complex one was a more potent antioxidant in MCF-7 and Hela cells than other complexes with SC50 values of 227.5 ± 0.28 and 361 ± 1.2 μL/mL, respectively. The comet assay results showed that complex two caused significant DNA damage in MCF-7 and HeLa cancer cells treated. Antimicrobial assays identified complex three as the most effective. Copper complexes give better antifungal activity against A. flavus than the palladium complex. We conclude that complex two is the most active in both cell types and might be assessed as a clinically useful drug for breast cancer treatment. The significance of the current study is the synthesis of antitumor drugs containing heterocyclic ligands, such as novel AMI complexes, and the study of their biological activities.