The capability of Monte-Carlo codes to predict kinetic parameters of nuclear systems is validated against a series of experiments in zero-power reactors. Experimental data are issued from facilities operated by the CEA, SCK•CEN and PSI research institutes and analyzed in the framework of the Venus-Eole-Proteus international collaboration. Facilities were configured to study several reactor types (High Temperature Reactor, LWR, Material testing reactors, ADS demonstrator) and type of spectra (thermal, epithermal and fast). Monte-Carlo codes are used to predict the effective generation time and in some cases the effective delayed neutron fraction. The benchmarked codes are MCNP5 and MCNPX coupled to the LAMBDA scripts developed at SCK•CEN. Generation time predictions from the two codes agree within 2.5% for values larger than 1µs but have larger discrepancies (up to 7%) for faster systems. Discrepancies with the measured values depend largely on the selected experiment and can reach up until 9%. Delayed neutron predictions with MCNP5 compares well (3-4%) with all measurements.