2023
DOI: 10.21203/rs.3.rs-2730065/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Physics-Informed Neural Networks for Solving Time-Dependent Mode-Resolved Phonon Boltzmann Transport Equation

Abstract: The phonon Boltzmann transport equation (BTE) is a powerful tool for modeling and understanding micro-/nanoscale thermal transport in solids, where Fourier's law can fail due to non-diffusive effect when the characteristic length/time is comparable to the phonon mean free path/relaxation time. However, numerically solving phonon BTE can be computationally costly due to its high dimensionality, especially when considering mode-resolved phonon properties and time dependency. In this work, we demonstrate the effe… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 47 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?