The phonon Boltzmann transport equation (BTE) is a powerful tool for modeling and understanding micro-/nanoscale thermal transport in solids, where Fourier's law can fail due to non-diffusive effect when the characteristic length/time is comparable to the phonon mean free path/relaxation time. However, numerically solving phonon BTE can be computationally costly due to its high dimensionality, especially when considering mode-resolved phonon properties and time dependency. In this work, we demonstrate the effectiveness of physics-informed neural networks (PINNs) in solving time-dependent mode-resolved phonon BTE. The PINNs are trained by minimizing the residual of the governing equations, and boundary/initial conditions to predict phonon energy distributions, without the need for any labeled training data. The results obtained using the PINN framework demonstrate excellent agreement with analytical and numerical solutions. Moreover, after offline training, the PINNs can be utilized for online evaluation of transient heat conduction, providing instantaneous results, such as temperature distribution. It is worth noting that the training can be carried out in a parametric setting, allowing the trained model to predict phonon transport in arbitrary values in the parameter space, such as the characteristic length. This efficient and accurate method makes it a promising tool for practical applications such as the thermal management design of microelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.