A new photoresponsive bent‐core nematic (BCN) material, which exhibits flexoelectric domains (FDs) driven by electric field, is reported. Unexpectedly, it is found that the morphologies of FDs can be controlled by irradiation with light fields. This light tunability is ascribed to the photoisomerization effect of the azo moiety within the BCN molecules, where the ratio of trans and cis isomers changes according to the parameters of the light field, resulting in adjustable electric threshold and periodicity of FDs. Based on this principle, a prototype of controllable optical grating is assembeled, whose operation can be manipulated by the wavelength or intensity of light. Due to the easy, instant, and remote operation by light, this optical, contactless tunability has a great advantage over traditional electric control in tunable photonic devices.