There is a pressing need to understand how ecosystems will respond to climate change. To date, no long-term empirical studies have confirmed that fish populations exhibit adaptive foraging behavior in response to temperature variation and the potential implications this has on fitness. Here, we use an unparalleled 11-y acoustic telemetry, stable isotope, and mark-recapture dataset to test if a population of lake trout (Salvelinus namaycush), a coldwater stenotherm, adjusted its use of habitat and energy sources in response to annual variations in lake temperatures during the open-water season and how these changes translated to the growth and condition of individual fish. We found that climate influenced access to littoral regions in spring (data from telemetry), which in turn influenced energy acquisition (data from isotopes), and growth (mark-recapture data). In more stressful years, those with shorter springs and longer summers, lake trout had reduced access to littoral habitat and assimilated less littoral energy, resulting in reduced growth and condition. Annual variation in prey abundance influenced lake trout foraging tactics (i.e., the balance of the number and duration of forays) but not the overall time spent in littoral regions. Lake trout greatly reduced their use of littoral habitat and occupied deep pelagic waters during the summer. Together, our results provide clear evidence that climate-mediated behavior can influence the dominant energy pathways of top predators, with implications ranging from individual fitness to food web stability.food web | climate change | habitat coupling | lake trout | north-temperate lake T here is growing urgency to understand how ecosystems are responding to climate change (1, 2). Recent work, using latitudinal gradients as proxies to warming, has argued that the behavioral responses of mobile top predators to changing temperatures can drive fundamental shifts in aquatic food webs by altering the coupling of major energy pathways (3, 4). Although this work is intriguing, no one has yet examined long-term empirical data that have explicitly tested if populations of top predators can shift their foraging behavior in response to annual changes in temperature or has evaluated what implications this might have for individual fitness. Temporal studies are critically important in this context because they control for the ecosystemspecific adaptations that can confound latitudinal studies and instead focus on the active responses to changing conditions that are highly relevant to understanding the impacts of climate change.Mobile top predators display adaptive foraging behavior by moving across spatially disparate habitats in response to changing conditions, most notably prey densities. For example, birds feed on both terrestrial and aquatic prey, effectively coupling these ecosystems (5). Habitat coupling can also occur within ecosystems and has been well described in freshwater lakes, where predatory fish feed upon prey supported by dissimilar energy sources, such as offsho...