Bovine mastitis is very important disease threatening the dairy industry and animal wealth globally, resulting in great economic losses. The present work was aimed to assess the phytochemical components, antioxidant activity and the antibacterial effectiveness of Balanites aegyptiaca fruits (BAF) and Curcuma longa powder (CLP) extracts. A total of 287 quarter milk samples were collected from dairy cows raised in four different governorates of Egypt; 95 from clinical mastitis, 37 from subclinical mastitis and 155 from normal milk samples. The isolates from milk samples were identified and differentiated by microbiological cultures, colony morphology, hemolytic activity of the colony, Gram's stain and biochemical tests. Antibacterial activity of the aqueous extract of BAF (AE-BAF) and ethanolic extract of CLP (EE-CLP) at different concentrations were investigated against Gram-positive and Gram-negative bacteria isolated from clinical and subclinical mastitic cows using agar well diffusion technique. The isolated bacteria from collected milk samples were Staphylococcus aureus (30.30%), Escherichia coli (28.03%), Streptococcus agalactiae (19.70%), Salmonella spp. (10.60%), Bacillus subtilis (6.06%), Klebsiella pneumoniae (3.03%) and Pseudomonas aeruginosa (2.27%). Preliminary phytochemical screening of AE-BAF indicated the presence of flavonoids, saponins, tannins, phenols, carbohydrate, cardiac glycoside, terpenoids and steroids. Except the cardiac glycoside, the EE-CLP contains the same components. The antioxidant efficacy of the tested plant extracts was evaluated by using free radical scavenging assay method. The AE-BAF and EE-CLP posses 86.6% and 85.9% free radical scavenging activity with 1.5 and 0.125 mg /ml concentrations, respectively. The AE-BAF possess significant antibacterial activity at 400 and 800 mg/ml against all isolates, except K. pneumoniae which was not suppressed at the 400 mg/ml concentration. The significant (P ≤ 0.05) antibacterial activities of EE-CLP were observed at 20 and 50 mg/ml concentrations. It could be concluded that AE-BAF and EE-CLP exhibited potent in-vitro antibacterial activities, thus justifying their application in treatment of clinical cases of bovine mastitis.