Measurement of high acoustic pressures is necessary in order to fully characterize clinical high-intensity focused ultrasound (HIFU) fields, and for accurate validation of computational models of ultrasound propagation. However, many existing measurement devices are unable to withstand the extreme pressures generated in these fields, and those that can often exhibit low sensitivity. Here, a planar Fabry-Pérot interferometer with hard dielectric mirrors and spacer was designed, fabricated, and characterized, and its suitability for measurement of nonlinear focused ultrasound fields was investigated. The noise equivalent pressure (NEP) of the scanning system scaled with the adjustable pressure detection range between 49 kPa for pressures up to 8 MPa and 152 kPa for measurements up to 25 MPa, over a 125 MHz measurement bandwidth. Measurements of the frequency response of the sensor showed that it varied by less than 3 dB in the range 1-62 MHz. The effective element size of the sensor was 65 and waveforms were acquired at a rate of 200 Hz. The device was used to measure the acoustic pressure in the field of a 1.1 MHz single-element spherically focused bowl transducer. Measurements of the acoustic field at low pressures compared well with measurements made using a Polyvinylidene difluoride needle hydrophone. At high pressures, the measured peak focal pressures agreed well with the focal pressure modeled using the Khokhlov-Zabolotskaya-Kuznetsov equation. Maximum peak positive pressures of 25 MPa and peak negative pressures of 12 MPa were measured, and planar field scans were acquired in scan times on the order of 1 min. The properties of the sensor and scanning system are well suited to measurement of nonlinear focused ultrasound fields, in both the focal region and the low-pressure peripheral regions. The fast acquisition speed of the system and its low NEP are advantageous, and with further development of the sensor, it has potential in application to HIFU metrology.