A low-power source, such as a gain-switched laser diode, usually requires several amplification stages to reach sufficient power levels. When operating in burst mode, a correct input burst shape must be determined in order to compensate for gain saturation of all amplifier stages. In this paper we report on closed-form equations that enable saturation compensation in multiamplifier setups, which eliminates the need for an adaptive feedback loop. The theoretical model is then evaluated in an experimental setup.
For quality control in high volume manufacturing of thin layers and for tracking of physical and chemical processes, ellipsometry is a common measurement technology. For such kinds of applications we present a novel approach of fast ellipsometric measurements. Instead of a conventional setup that uses a standard photo-elastic modulator, we use a 92 kHz Single Crystal Photo-Elastic Modulator (SCPEM), which is a LiTaO3 crystal with a size of 28 × 9 × 4 mm. This small, simple, and cost-effective solution also offers the advantage of direct control of the retardation via the current amplitude, which is important for repeatability of the measurements. Instead of a Lock-In Amplifier, an automated digital processing based on a fast analog to digital converter controlled by a highly flexible Field Programmable Gate Array is used. This and the extremely compact and efficient polarization modulation allow fast ellipsometric testing where the upper limit of measurement rates is mainly limited by the desired accuracy and repeatability of the measurements. The standard deviation that is related to the repeatability +/-0.002° for dielectric layers can be easily reached.
In this manuscript we present a true pulse-on-demand concept of a hybrid CPA laser system, consisting of a chirped-pulse fiber amplifier and an additional solid-state amplifier, capable of generating femtosecond pulses on demand without an external optical modulator/shutter. Pulse-on-demand operation is achieved by introducing idler pulses with a few nanoseconds duration and selectively switching between the femtosecond and idler pulses. The idler pulses are used to maintain a constant population inversion in the fiber amplifier as well as in the solid-state amplifier. Second harmonic generation (SHG) unit then effectively filters out the idler pulses due to their low peak power, leaving only a stable femtosecond pulse train. This concept is demonstrated on a CPA hybrid system that can generate pulses with up to 200 µJ at 515 nm with a pulse duration under 450 fs. As there is no optical modulator at the laser output, the presented concept also enables further power scaling.
The intermediate pulse duration regime between typical ultra-short and nanosecond pulses has been investigated using MHz-range bursts of 70 ps pulses emitted from a custom-made fiber laser source. The goal of this study was to observe and understand the processes involved during laser ablation on the timescales from picoseconds to nanoseconds, relevant due to pulses in bursts. We developed material processing approaches that enable similar behaviour as single 70 ps pulse ablation to ultra-short pulses in terms of quality and burst-mode behaviour like nanosecond pulses in terms of efficiency. The variability of the fiber laser operation modes was studied and compared to both ultra-short and nanosecond pulses from standard laser sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.