Internet of Things (IoT) has becoming a central theme in current technology trend whereby objects, people or even animals and plants can exchange information over the Internet. IoT can be referred as a network of interconnected devices such as wearables, sensors and implantables, that has the ability to sense, interact and make collective decisions autonomously. In short, IoT enables a full spectrum of machine-to-machine communications equipped with distributed data collection capabilities and connected through the cloud to facilitate centralized data analysis. Despite its great potential, the reliability of IoT devices is impeded with limited energy supply if these devices were to deploy particularly in energy-scarced locations or where no human intervention is possible. The best possible deployment of IoT technology is directed to cater for unattended situations like structural or environmental health monitoring. This opens up a new research area in IoT energy efficiency domain. A possible alternative to address such energy constraint is to look into re-generating power of IoT devices or more precisely known as energy harvesting or energy scavenging. This chapter presents the review of various energy harvesting mechanisms, current application of energy harvesting in IoT domain and its future design challenges.