A comprehensive review is presented on the advances achieved in past years on fundamental and applied materials science of diamond films and engineering to integrate them into new generations of microelectromechanical system (MEMS) and nanoelectromechanical systems (NEMS). Specifically, the review focuses on describing the fundamental science performed to develop thin film synthesis processes and the characterization of chemical, mechanical, tribological and electronic properties of microcrystalline diamond, nanocrystalline diamond and ultrananocrystalline diamond films technologies, and the research and development focused on the integration of the diamond films with other film-based materials. The review includes both theoretical and experimental work focused on optimizing the films synthesis and the resulting properties to achieve the best possible MEMS/NEMS devices performance to produce new generation of MEMS/NEMS external environmental sensors and energy generation devices, human body implantable biosensors and energy generation devices, electron field emission devices and many more MEMS/NEMS devices, to produce transformational positive impact on the way and quality of life of people worldwide.