Two seven-gene phenazine biosynthetic loci were cloned from Pseudomonas aeruginosa PAO1. The operons, designated phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2, are homologous to previously studied phenazine biosynthetic operons from Pseudomonas fluorescens and Pseudomonas aureofaciens. Functional studies of phenazine-nonproducing strains of fluorescent pseudomonads indicated that each of the biosynthetic operons from P. aeruginosa is sufficient for production of a single compound, phenazine-1-carboxylic acid (PCA). Subsequent conversion of PCA to pyocyanin is mediated in P. aeruginosa by two novel phenazine-modifying genes, phzM and phzS, which encode putative phenazine-specific methyltransferase and flavin-containing monooxygenase, respectively. Expression of phzS alone in Escherichia coli or in enzymes, pyocyanin-nonproducing P. fluorescens resulted in conversion of PCA to 1-hydroxyphenazine. P. aeruginosa with insertionally inactivated phzM or phzS developed pyocyanin-deficient phenotypes. A third phenazine-modifying gene, phzH, which has a homologue in Pseudomonas chlororaphis, also was identified and was shown to control synthesis of phenazine-1-carboxamide from PCA in P. aeruginosa PAO1. Our results suggest that there is a complex pyocyanin biosynthetic pathway in P. aeruginosa consisting of two core loci responsible for synthesis of PCA and three additional genes encoding unique enzymes involved in the conversion of PCA to pyocyanin, 1-hydroxyphenazine, and phenazine-1-carboxamide.Phenazine compounds produced by fluorescent Pseudomonas species are biologically active metabolites that function in microbial competitiveness (37), the suppression of soilborne plant pathogens (1,11,55,56), and virulence in human and animal hosts (35).The most widely studied phenazine-producing fluorescent pseudomonad is P. aeruginosa, a gram-negative opportunistic pathogen of animals, insects, nematodes, and plants (30,33,35,46). In humans, P. aeruginosa infects immunocompromised, burned, or injured patients and can cause both acute and chronic lung disease. Strains of P. aeruginosa produce a variety of redox-active phenazine compounds, including pyocyanin, phenazine-1-carboxylic acid (PCA), 1-hydroxyphenazine (1-OH-PHZ), and phenazine-1-carboxamide (PCN) (7,52,57).From 90 to 95% of P. aeruginosa isolates produce pyocyanin (52), and the presence of high concentrations of pyocyanin in the sputum of cystic fibrosis patients has suggested that this compound plays a role in pulmonary tissue damage observed with chronic lung infections (64). This idea is supported by several recent studies which demonstrated that pyocyanin contributes in a variety of ways to the pathophysiological effects observed in airways infected by P. aeruginosa. Pyocyanin interferes with the regulation of ion transport, ciliary beat frequency, and mucus secretion in airway epithelial cells by altering the cytosolic concentration of calcium (15). It may interact with endothelium-derived relaxing factor or with nitric oxide (which plays a central role in the control ...