Introduction: Based on an established classification system of Apert syndrome subtypes, we aim to directly analyze the correlation between segmented airway volume changes and different skull suture synostosis, so as to provide individualized surgical planning for each subgroup of Apert patients. Methods: CT scans of 44 unoperated Apert syndrome and 53 controls were included and subgrouped as: type I. Bilateral coronal synostosis; type II. Pansynostosis; type III. Perpendicular combinations of cranial vault synostosis. CT scans were measured using Mimics and 3-matics software. Results: Type I developed a 41% ( P = .116) reduction in the nasal cavity, yet a normal sized pharyngeal airway. The reduced nasal airway was linked to the decreased cross sectional area ( r = 0.598, P = .001), vertical dimension ( r = 0.719, P < .001), and narrower width ( r = 0.727, P < .001). Type II developed proportionally reduced nasal airway and pharyngeal airway volumes (both 47%, P = .113 and P = .041), along with the proportionally restricted cross sectional areas at choana and condylion levels by 62 to 65%. This reduction is related to the cranial base length ( r = 0.712, P = .048), and also cranial base angulation ( r = 0.780, P = .023). Nasal and pharyngeal airway developed normal volume in type III. However, the cross sectional areas at the gonion level diminished by 74% ( P < .001). Conclusion: Airway development is influenced by subtype of Apert suture synostosis. Type II pansynostosis Apert patients developed synchronous reduced nasal and pharyngeal airways, which is correlated with the slightly flattened cranial base. Type I bicoronal patients have a smaller nasal cavity, but normally sized hypopharynx. Yet, type III patients developed normal nasopharyngeal airway volume overall.