1In individuals with major depressive disorder, neurophysiological changes often alter motor control and thus affect the mechanisms controlling speech production and facial expression. These changes are typically associated with psychomotor retardation, a condition marked by slowed neuromotor output that is behaviorally manifested as altered coordination and timing across multiple motor-based properties. Changes in motor outputs can be inferred from vocal acoustics and facial movements as individuals speak. We derive novel multi-scale correlation structure and timing feature sets from audio-based vocal features and videobased facial action units from recordings provided by the 4th International Audio/Video Emotion Challenge (AVEC). The feature sets enable detection of changes in coordination, movement, and timing of vocal and facial gestures that are potentially symptomatic of depression. Combining complementary features in Gaussian mixture model and extreme learning machine classifiers, our multivariate regression scheme predicts Beck depression inventory ratings on the AVEC test set with a root-mean-square error of 8.12 and mean absolute error of 6.31. Future work calls for continued study into detection of neurological disorders based on altered coordination and timing across audio and video modalities.