Abstract-Almost all speech contains simultaneous contributions from more than one acoustic source within the speaker's vocal tract. In this paper, we propose a method-the pitch-scaled harmonic filter (PSHF)-which aims to separate the voiced and turbulence-noise components of the speech signal during phonation, based on a maximum likelihood approach. The PSHF outputs periodic and aperiodic components that are estimates of the respective contributions of the different types of acoustic source. It produces four reconstructed time series signals by decomposing the original speech signal, first, according to amplitude, and then according to power of the Fourier coefficients. Thus, one pair of periodic and aperiodic signals is optimized for subsequent time-series analysis, and another pair for spectral analysis. The performance of the PSHF algorithm was tested on synthetic signals, using three forms of disturbance (jitter, shimmer and additive noise), and the results were used to predict the performance on real speech. Processing recorded speech examples elicited latent features from the signals, demonstrating the PSHF's potential for analysis of mixed-source speech.