The WW domain-containing oxidoreductase (WWOX) gene encodes a tumor suppressor. We have previously shown that targeted ablation of the Wwox gene in mouse increases the incidence of spontaneous and chemically induced tumors. To investigate WWOX function in vivo, we examined Wwox-deficient (Wwox ؊/؊ ) mice for phenotypical abnormalities. Wwox ؊/؊ mice are significantly reduced in size, die at the age of 2-3 weeks, and suffer a metabolic disorder that affects the skeleton. Wwox ؊/؊ mice exhibit a delay in bone formation from a cell autonomous defect in differentiation beginning at the mineralization stage shown in calvarial osteoblasts ex vivo and supported by significantly decreased bone formation parameters in Wwox ؊/؊ mice by microcomputed tomography analyses. Wwox ؊/؊ mice develop metabolic bone disease, as a consequence of reduced serum calcium, hypoproteinuria, and hypoglycemia leading to increased osteoclast activity and bone resorption. Interestingly, we find WWOX physically associates with RUNX2, the principal transcriptional regulator of osteoblast differentiation, and on osteocalcin chromatin. We show WWOX functionally suppresses RUNX2 transactivation ability in osteoblasts. In breast cancer MDA-MB-242 cells that lack endogenous WWOX protein, restoration of WWOX expression inhibited Runx2 and RUNX2 target genes related to metastasis. Affymetrix mRNA profiling revealed common gene targets in multiple tissues. In Wwox ؊/؊ mice, genes related to nucleosome assembly and cell growth genes were down-regulated, and negative regulators of skeletal metabolism exhibited increased expression. Our results demonstrate an essential requirement for the WWOX tumor suppressor in postnatal survival, growth, and metabolism and suggest a central role for WWOX in regulation of bone tissue formation.
WW domain-containing oxidoreductase (WWOX)3 is a 46-kDa protein that contains two N-terminal WW domains and a central short-chain dehydrogenase/reductase domain (1, 2). WWOX was identified as a putative tumor suppressor in cancer cells because it lies in a genomic region that is frequently altered in pre-neoplastic and neoplastic lesions (1, 2). Indeed, expression of WWOX is deregulated in several types of cancer, including breast, prostate, lung, stomach, and pancreatic carcinomas (3, 4). Ectopic expression of WWOX in cancer cells lacking expression of endogenous WWOX results in significant growth inhibition and prevents the development of tumors in athymic nude mice (5, 6). Recently, we generated a mouse carrying a targeted deletion of the Wwox gene (7). We reported that loss of both alleles of Wwox resulted in the formation of frequent juvenile osteosarcomas, whereas loss of one allele increased the incidence of spontaneous and chemically induced tumors (7, 8) thus confirming that Wwox is a bona fide tumor suppressor.The identification of WWOX-interacting proteins has provided insights into the potential roles of WWOX in cell signaling and its impact on cell fate. WWOX cytosolic interactions, through its first WW domain that b...