Electrical Capacitance Tomography is a non-invasive imaging technique, which allows visualization of the industrial processes interior and can be applied to many branches of the industry. Image reconstruction process, especially in case of 3D images, is a very time consuming task (when using classic processors and algorithms), which in turn leads to an unacceptable waiting time and currently limits the use of 3D Electrical Capacitance Tomography. Reconstruction using deterministic methods requires execution of many basic operations of linear algebra, such as matrix transposition, multiplication, addition and subtraction. In order to reach real-time reconstruction a 3D ECT computational subsystem must be able to transform capacitance data into images in a fraction of a second. By assuming, that many of the computations can be performed in parallel using modern, fast graphics processor and by altering the algorithms, time to achieve high quality image reconstruction will be shortened significantly. The research conducted while analysing ECT algorithms has also shown that, although dynamic development of GPU computational capabilities and its recent application for image reconstruction in ECT has significantly improved calculations time, in modern systems a single GPU is not enough to perform many tasks. Distributed Multi-GPU solutions can reduce reconstruction time to only a fraction of what was possible on pure CPU systems. Nevertheless performed tests clearly illustrate the need for further optimizations of previously developed algorithms.