Drought is an important abiotic stress that limits the plant growth and productivity. Present investigation was aimed that plant growth-promoting rhizobacteria (PGPR) isolated from moisturestressed area impart drought tolerance in plants and tryptophan may improve their efficiency. Pseudomonas sp. (1), Bacillus cereus and Bacillus pumilus (B. pumilus) were isolated from maize rhizosphere grown in irrigated fields, semi-arid region and arid region, respectively. Proteus sp. and Pseudomonas sp. (2) were isolated from rice rhizosphere grown in irrigated fields and raised bed. B. pumilus produced 5× more abscisic acid (ABA) in culture media than Pseudomonas sp. (1) by the addition of L-tryptophan. These inoculants also modulated the phytohormone content of maize leaves in a pot experiment. Higher ABA was produced by the application of B. pumilus and Pseudomonas sp. (2), while indole 3-acetic acid and gibberellic acid were found higher in Pseudomonas sp. (1) and Proteus sp. treated plants. Addition of L-tryptophan increased the concentration of all phytohormones in soil and leaves of maize. Maximum increase in relative water content, osmotic potential, protein content and photosynthetic pigments was recorded in B. pumilus treated maize plants. Under irrigated condition, response of Pseudomonas sp. coinoculated with B. pumilus from arid field superseded while under drought stress the effect of later predominated. Bacillus pumilus can be used in the formulation of biofertilizer to alleviate drought stress in arid and semi-arid regions.
ARTICLE HISTORY