Selenium and silver nanoparticles (NPs) were synthesized using Spermacoce hispida aqueous leaf extract (Sh-ALE). The optimum condition required for the synthesis of Sh-SeNPs was found to be 30 mM selenious acid solution to Sh-ALE at the ratio of 4:46, pH 9, incubated at 40 °C for 10 min. On the other hand, for Sh-AgNPs the optimum condition was found to be 1 mM AgNO3 to the Sh-ALE solution at the ratio of 4:46, pH 8, incubated at 40 °C for 10 min. SEM analysis revealed that both the Sh-AgNPs and Sh-SeNPs are predominantly rod-shaped. Sh-SeNPs and Sh-AgNPs were found to possess concentration-dependent antioxidant activity. However, Sh-SeNPs showed potent anti-inflammatory property, antibacterial property and anticancer activity against human cervical cancer cell in comparison to Sh-AgNPs. Phytochemical analysis, FTIR and GC-MS analysis showed that various flavonoids, saponins and phenolic compounds present in Sh-ALE catalysed the formation of NPs. Also, GC-MS analysis revealed that Sh-SeNPs are capped by synaptogenin B and derivatives of apigenin, quinoline and quinazoline. The advantage of attachment of such phytoconstituents on Sh-SeNPs for its potent biological activity in comparison to Sh-AgNPs is evident in in vitro conditions.