The person re-identification is one of the most significant problems in computer vision and surveillance systems. The recent success of deep convolutional neural networks in image classification has inspired researchers to investigate the application of deep learning to the person re-identification. However, the huge amount of research on this problem considers classical settings, where pedestrians are captured by static surveillance cameras, although there is a growing demand for analyzing images and videos taken by drones. In this paper, we aim at filling this gap and provide insights on the person re-identification from drones. To our knowledge, it is the first attempt to tackle this problem under such constraints. We present the person re-identification dataset, named DRone HIT (DRHIT01), which is collected by using a drone. It contains 101 unique pedestrians, which are annotated with their identities. Each pedestrian has about 500 images. We propose to use a combination of triplet and large-margin Gaussian mixture (L-GM) loss to tackle the drone-based person re-identification problem. The proposed network equipped with multi-branch design, channel group learning, and combination of loss functions is evaluated on the DRHIT01 dataset. Besides, transfer learning from the most popular person re-identification datasets is evaluated. Experiment results demonstrate the importance of transfer learning and show that the proposed model outperforms the classic deep learning approach.