The RIG-like helicase (RLH) family of intracellular receptors detect viral nucleic acid and signal through the mitochondrial antiviral signalling adaptor MAVS (also known as Cardif, VISA and IPS-1) during a viral infection [1][2][3][4][5][6] . MAVS activation leads to the rapid production of antiviral cytokines, including type 1 interferons. Although MAVS is vital to antiviral immunity, its regulation from within the mitochondria remains unknown. Here we describe human NLRX1, a highly conserved nucleotide-binding domain (NBD)-and leucine-rich-repeat (LRR)-containing family member (known as NLR) that localizes to the mitochondrial outer membrane and interacts with MAVS. Expression of NLRX1 results in the potent inhibition of RLH-and MAVS-mediated interferon-b promoter activity and in the disruption of virus-induced RLH-MAVS interactions. Depletion of NLRX1 with small interference RNA promotes virus-induced type I interferon production and decreases viral replication. This work identifies NLRX1 as a check against mitochondrial antiviral responses and represents an intersection of three ancient cellular processes: NLR signalling, intracellular virus detection and the use of mitochondria as a platform for anti-pathogen signalling. This represents a conceptual advance, in that NLRX1 is a modulator of pathogen-associated molecular pattern receptors rather than a receptor, and identifies a key therapeutic target for enhancing antiviral responses.Mammalian members of the nucleotide-binding domain (NBD) and leucine-rich-repeat-containing (LRR) (known as NLR, see http://www.genenames.org/genefamily/nacht.html) family of proteins are indispensable for cellular responses to pathogens. This NBD-LRR protein structure is ancient and highly conserved, as shown by its initial identification among plant disease-resistance proteins 7-12 . Current dogma posits that NLRs function as cytoplasmic surveillance molecules that sense intracellular pathogen-associated molecular patterns (PAMPs), or as regulators of pathogen-initiated signalling cascades 13,14 . Viral PAMPs are detected by the cytoplasmic RLH receptors RIG-I (also known as DDX58) and MDA-5 (also known as IFIH1), which signal through the mitochondrial protein MAVS, resulting in the activation of interferon regulatory factor 3 (IRF3) and NF-kB and type-1 interferon transcription [1][2][3][4][5][6] . Abrogation of MAVS expression or function leads to reduced type 1 interferon production and antiviral protection 15 .To study the potential role of NLR proteins in regulating mitochondrial antiviral signalling, we used bioinformatics to identify NLRs localized to the mitochondria. We identified one putative mitochondrial NLR called NLRX1 (previously known as CLR11.3 and NOD9) 9,16 (Fig. 1a). The predicted peptide sequence and distinct domains of NLRX1 are shown in Supplementary Fig. 1. Consistent with the conserved motif structure of the NLR family, NLRX1 contains a central putative NBD and carboxy-terminal LRRs. The assignment of the amino-terminal effector domain to a subclass i...