Intensive farming in agriculture raises questions in relation to environmental sustainability and the widespread use of agrochemicals. In the present work, we compare the impact of organic and intensive farming, in connection to the soil suppressiveness against the soilborne pathogen Rhizoctonia solani. Three farms were considered in the study: two practicing organic cultivation (for 10 and 20 years, respectively), and one applying conventional cultivation. Soil suppressiveness was assessed in a greenhouse bioassay with lettuce (Lactuca sativa). Soil microbiome was characterized by combining BIOLOG EcoPlates™ with high‐throughput sequencing of bacterial and eukaryotic rRNA gene markers. Suppressiveness towards R. solani was higher in organic than in conventional farming soil, but this property was lost after soil sterilization. Functional biodiversity was significantly higher in the two organic soils, and this parameter was predictive of the suppressiveness towards R. solani. According to our analyses, the overall microbial taxonomic diversity was unlinked to suppressiveness. A correlation analysis, carried out at the genus level for the most abundant bacterial and eukaryotic microbial taxa, showed that 58.7% of the genera had a statistically significant correlation with suppressiveness. In particular, the genera Flavisolibacter, Massilia, Pseudomonas, Ramlibacter, Rhizophus and the oligochaete worms belonging to the Enchytraeidae family positively correlated with the disease suppression.