Reparation of the central nervous system (CNS) is important because when it is impaired its recovery is difficult and concomitant malfunction of other parts of body occurs. In our previous studies, chitosan was found to be a good material supporting nerve repair. The purpose of this article was to study the ability of chitosan and some chitosan-derived materials to facilitate the growth of nerve cells. Those materials were chitosan, glutaraldehyde-crosslinked chitosan, glutaraldehyde-crosslinked chitosan-gelatin conjugate, a chitosan-gelatin mixture, chitosan coated with polylysine (CAP), and a chitosan-polylysine mixture (CPL). Gelatin and polylysine were used as controls. After nerve cells (gliosarcoma cells and normal cerebral cells) were grown on those materials, their attachment, spread, and growth were observed. The adsorption of some extracellular matrix molecules such as laminin and fibronectin on the materials and the role the molecules play in nerve cell attachment and spreading were also studied by enzyme-linked immunosorbent assay and MTT method. We found that both CAP and CPL have excellent nerve cell affinity, defined as the ability to promote nerve cell to grow and function normally. Those two materials may be promising for the repair of the nervous system. Materials precoated with laminin, fibronectin, and serum were analyzed for their nerve cell affinity. Results suggest that after being precoated with laminin and fibronectin solution or serum, all material have better nerve cell affinity.