We define and investigate a quantisation of null hypersurfaces in the context
of loop quantum gravity on a fixed graph. The main tool we use is the
parametrisation of the theory in terms of twistors, which has already proved
useful in discussing the interpretation of spin networks as the quantization of
twisted geometries. The classical formalism can be extended in a natural way to
null hypersurfaces, with the Euclidean polyhedra replaced by null polyhedra
with space-like faces, and SU(2) by the little group ISO(2). The main
difference is that the simplicity constraints present in the formalims are all
first class, and the symplectic reduction selects only the helicity subgroup of
the little group. As a consequence, information on the shapes of the polyhedra
is lost, and the result is a much simpler, abelian geometric picture. It can be
described by an Euclidean singular structure on the 2-dimensional space-like
surface defined by a foliation of space-time by null hypersurfaces. This
geometric structure is naturally decomposed into a conformal metric and scale
factors, forming locally conjugate pairs. Proper action-angle variables on the
gauge-invariant phase space are described by the eigenvectors of the Laplacian
of the dual graph. We also identify the variables of the phase space amenable
to characterize the extrinsic geometry of the foliation. Finally, we quantise
the phase space and its algebra using Dirac's algorithm, obtaining a notion of
spin networks for null hypersurfaces. Such spin networks are labelled by SO(2)
quantum numbers, and are embedded non-trivially in the unitary,
infinite-dimensional irreducible representations of the Lorentz group.Comment: 22 pages, 3 figures. v2: minor corrections, improved presentation in
section 4, references update