Background: Porcine Deltacoronavirus (PDCoV) is a newly emerging Coronavirus that was first identified in 2012 in Hong Kong, China. Since then, PDCoV has subsequently been reported worldwide, causing a high number of neonatal piglet deaths and significant economic losses to the swine industry. Therefore, it is necessary to establish a highly sensitive and specific method for the rapid diagnosis of PDCoV.Results: In the present study, a highly sensitive and specific diagnostic method using recombinase polymerase amplification combined with a lateral flow dipstick (LFD-RPA) was developed for rapid and visual detection of PDCoV. The system can be performed under a broad range of temperature conditions from 10 to 37°C, and the detection of PDCoV can be completed in 10 min at 37°C. The sensitivity of this assay was 10 times higher than that of conventional PCR with a lower detection limit of 1 × 10 2 copies/µl of PDCoV. Meanwhile, the LFD-RPA assay specifically amplified PDCoV, while there was no cross-amplification with other swine-associated viruses, including Porcine epidemic diarrhea virus (PEDV), Transmissible gastroenteritis virus (TGEV), Porcine kobuvirus (PKoV), Foot and mouth disease virus (FMDV), Porcine reproductive and respiratory syndrome virus (PRRSV), Porcine circovirus type 2 (PCV2), Classical swine fever virus (CSFV) and Seneca valley virus (SVV). The repeatability of the test results indicated that this assay had good repeatability. In addition, 68 clinical samples (48 fecal swab specimens and 20 intestinal specimens) were further tested by LFD-RPA and RT-PCR assay. The positive rate of LFD-RPA clinical samples was 26.47% higher than that of conventional PCR (23.53%). Conclusions: The LFD-RPA assay successfully detected PDCoV in less than 20 min in this study, providing a potentially valuable tool to improve molecular detection for PDCoV and to monitor the outbreak of PDCoV, especially in low-resource areas and laboratories.