2004
DOI: 10.1016/j.aim.2003.07.006
|View full text |Cite
|
Sign up to set email alerts
|

Poisson deformations of symplectic quotient singularities

Abstract: We establish a connection between smooth symplectic resolutions and symplectic deformations of a (possibly singular) affine Poisson variety.In particular, let V be a finite-dimensional complex symplectic vector space and GCSpðV Þ a finite subgroup. Our main result says that the so-called Calogero-Moser deformation of the orbifold V =G is, in an appropriate sense, a versal Poisson deformation. That enables us to determine the algebra structure on the cohomology H ðX ; CÞ of any smooth symplectic resolution X 7V… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

2
135
0
2

Year Published

2004
2004
2023
2023

Publication Types

Select...
8

Relationship

1
7

Authors

Journals

citations
Cited by 127 publications
(139 citation statements)
references
References 27 publications
2
135
0
2
Order By: Relevance
“…Braconnier [4], Huebschmann [24], Krasilshschik [28], Lichnerowicz [29]). Mentionnons que Ginzburg et Kaledin utilisent la cohomologie de Poisson dans leur travail sur les résolutions de singularités symplectiques [21].…”
Section: Introductionunclassified
See 1 more Smart Citation
“…Braconnier [4], Huebschmann [24], Krasilshschik [28], Lichnerowicz [29]). Mentionnons que Ginzburg et Kaledin utilisent la cohomologie de Poisson dans leur travail sur les résolutions de singularités symplectiques [21].…”
Section: Introductionunclassified
“…On renvoie le lecteur à l'article de Ginzburg-Kaledin [21] pour cet aspect spécifique de la théorie. Nos calculs d'homologie, annoncés dans la note [14], seront rédigés dans un article ultérieur.…”
Section: Introductionunclassified
“…Fix a finite group G and a representation V = C n of G. The Hochschild cohomology of S(V )#G is given in [12,14] when G acts faithfully on V . In this section, we reformulate this result to aid our explicit computations and our determination of graded Hecke algebras.…”
Section: Hochschild Cohomology Of S(v )#Gmentioning
confidence: 99%
“…The graded vector space structure of Hochschild cohomology HH q (S(V )#G) can be described in terms of invariants of centralizer subgroups of G (see [12,14]). We recall this structure in Section 3 and reformulate it in terms of semi-invariants.…”
Section: Introductionmentioning
confidence: 99%
“…When the parameter c is zero, Z c (G) is the coordinate ring of V /G. It is known, by [11], that Z c (G) defines a flat Poisson deformation of V /G. …”
mentioning
confidence: 99%