The cation-t interaction is an important, general force for molecular recognition in biological receptors. Through the sidechains of aromatic amino acids, novel binding sites for cationic ligands such as acetylcholine can be constructed. We report here a number of calculations on prototypical cation-7r systems, emphasizing structures of relevance to biological receptors and prototypical heterocycles of the type often of importance in medicinal chemistry. Trends in the data can be rationalized using a relatively simple model that emphasizes the electrostatic component of the cation-ir interaction. In particular, plots of the electrostatic potential surfaces of the relevant aromatics provide useful guidelines for predicting cation-7r interactions in new systems.of relevance to biological receptors and prototype heterocycles of the type often of importance in medicinal chemistry. We find that all the trends in this series are qualitatively reproduced by considering only the electrostatic potential energy surface of the aromatic in the absence of a cation, consistent with the electrostatic model. In addition, the current model successfully rationalizes observations concerning the relative frequency of different aromatic amino acids at biological cation-Ir sites. We also show that the major trends of the ab initio surfaces are reproduced using the much less costly AM1 method, greatly expanding the range of applicability of the method.In recent years, studies of model systems and the analysis of biological macromolecular structures have established the importance of the cation-rr interaction as a force for molecular recognition in aqueous media (1). Appropriately designed cyclophane receptors serve as powerful, general hosts for quaternary ammonium, sulfonium, and guanidinium cations, in large part because of the cation-IT interaction (2-4). In the gas phase, the binding of simple cations to benzene and related structures has been shown to be quite substantial, comparable even to cation-water interactions (5). In addition, a large amount of evidence has now been developed that establishes cation-IT interactions as important in a number of biological binding sites for cations (1,6,7). Cation-IT interactions have been considered in such diverse systems as acetylcholine receptors (nicotinic, muscarinic, and ACh esterase), K+ channels, the cyclase enzymes of steroid biosynthesis, and enzymes that catalyze methylation reactions involving S-adenosylmethionine (1). Cation-Ir interactions have also been invoked to rationalize specific drug-receptor interactions (8)(9)(10)(11)