The separation of particles with respect to their intrinsic properties is an ongoing task in various fields such as biotechnology and recycling of electronic waste.Especially for small particles in the lower micrometer or nanometer range, separation techniques are a field of current research since many existing approaches lack either throughput or selectivity. Dielectrophoresis (DEP) is a technique that can address multiple particle properties, making it a potential candidate to solve challenging separation tasks. Currently, DEP is mostly used in microfluidic separators and thus limited in throughput. Additionally, DEP setups often require expensive components, such as electrode arrays fabricated in the clean room.Here, we present and characterize a separator based on two inexpensive customdesigned printed circuit boards (80 × 120 mm board size). The boards consist of interdigitated electrode arrays with 250 μm electrode width and spacing. We demonstrate the separation capabilities using polystyrene particles ranging from 500 nm to 6 μm in monodisperse experiments. Further, we demonstrate selective trapping at flow rates up to 240 ml∕h in the presented device for a binary mixture. Our experiments demonstrate an affordable way to increase throughput in electrode-based DEP separators.