The signals of navigation satellites are easily affected by spoofing interference, causing the wrong position, speed or Universal Time Coordinate of the receiver to be calculated. Traditional detection and suppression algorithms are used only to eliminate the spoofing signals, which may lead to an insufficient number of satellites for positioning. An adaptive spoofing suppression algorithm (ASSA) based on a multiple antenna array is proposed in this study. The ASSA can use the cross-correlation gain of multiple antenna array to adaptively generate nulling and realize the simultaneous suppression of multiple spoofing signals. Moreover, ASSA does not need to capture and track spoofing separately, thus reducing the complexity of implementation and calculation. Experiments were conducted to verify the proposed system under different conditions, and the results show that ASSA can suppress multiple spoofings with little impact on positioning performance. Under the condition of spoofing, ASSAs were (2.22 m, 2.41 m, 4.43 m) in the static test and (2.27 m, 2.43 m, 4.64 m) in the kinematic test, which are good positioning performances for both. In addition, the ASSA is applied before capturing signals, which is beneficial to identifying and eliminating spoofing earlier and faster.