Aquaporins (AQPs) are key players regulating urinary-concentrating ability. To date, eight aquaporins have been characterized and localized along the nephron, namely, AQP1 located in the proximal tubule, thin descending limb of Henle, and vasa recta; AQP2, AQP3 and AQP4 in collecting duct principal cells; AQP5 in intercalated cell type B; AQP6 in intercalated cells type A in the papilla; AQP7, AQP8 and AQP11 in the proximal tubule. AQP2, whose expression and cellular distribution is dependent on vasopressin stimulation, is involved in hereditary and acquired diseases affecting urine-concentrating mechanisms. Due to the lack of selective aquaporin inhibitors, the patho-physiological role of renal aquaporins has not yet been completely clarified, and despite extensive studies, several questions remain unanswered. Until the recent and large-scale development of genetic manipulation technology, which has led to the generation of transgenic mice models, our knowledge on renal aquaporin regulation was mainly based on in vitro studies with suitable renal cell models. Transgenic and knockout technology approaches are providing pivotal information on the role of aquaporins in health and disease. The main goal of this review is to update and summarize what we can learn from cell and animal models that will shed more light on our understanding of aquaporin-dependent renal water regulation.