Pollen-parent effects on fruit size and quality have been found previously among competing self-pollinated and cross-pollinated fruit on the same Redlands Joy strawberry plant. These effects occur independently of the percentage of fertilized seeds on the fruit, but the expression of these effects on fruit size and some aspects of quality are greatest when calcium is in shortest supply. Here, we aimed to clarify at what developmental stages the self-pollinated and cross-pollinated fruit diverge in size and quality and whether differences between self-pollinated and cross-pollinated fruit are due to early differences in nutrient accumulation. Fruit were harvested at 1, 2 and 3 weeks after hand-pollination and at full ripeness, approximately 4 weeks after hand-pollination. We measured fruit mass, length, diameter, colour, and the concentrations of aluminium, boron, calcium, copper, iron, nitrogen, magnesium, manganese, sodium, phospho-rous, potassium and zinc. Temporary increases in fruit mass, length or diameter due to cross-pollination were evident at 1 or 2 weeks after pollination. Consistent increases in size and skin darkness from cross-pollination emerged in the final week of fruit development. We found little evidence that self-pollinated and cross-pollinated fruit differed in mineral nutrient accumulation at any stage of fruit development. The results demonstrate that cross-pollination effects on strawberry fruit size are evident briefly during early fruit growth but emerge mainly during the final week of fruit development. The effects of cross-pollination on fruit size are not the result of early differences in mineral nutrient accumulation between self-pollinated and cross-pollinated fruit.