The interaction between biochar and soil changes nitrogen (N) dynamics in different ecosystems.Although multiple studies have reported influences of biochar on soil inorganic N (SIN) including ammonium (NH 4 + -N) and nitrate (NO 3 --N), the influences reported are contradictory. We undertook a meta-analysis to investigate how biochar properties and the interaction among biochar, soil and fertilisation affect SIN. This quantitative analysis used 56 studies with 1080 experimental cases from manuscripts published between 2010 and 2015. Overall, we found that biochar reduced SIN regardless of experimental conditions (approximately -11±2% of NH 4 + -N and -10±1.6% of NO 3 --N); however, 95% of cases were observed within one year after biochar application. SIN was best explained by residence time of biochar in soil, pyrolysis temperature, application rate, fertiliser type, and soil pH. The effects of biochar were complex due to the interaction of biochar with environmental factors. Most biochar trials used wood as a feedstock, but woody biochar did not decrease SIN as much as other plant-derived biochars. When biochar was used with NH 4 -based fertilisers, SIN decreased compared to biochar with no fertiliser. In contrast, adding organic fertiliser with biochar increased SIN compared to biochar alone. SIN was clearly reduced after one month of biochar application, suggesting that biochar should be applied at least one month prior to planting so plants are not affected by decreased N. Our results revealed that the interactions between biochar and environmental factors, pyrolysis temperature of biochar and biochar surface properties are the main driving factors affecting SIN. There were limited long term studies of greater than 1 year, thus the long term effects of biochar on SIN still remain unclear.
Biochar application to soils may increase carbon (C) sequestration due to the inputs of recalcitrant organic C. However, the effects of biochar application on the soil greenhouse gases (GHGs) fluxes appear variable among many case studies; therefore the efficacy of biochar as a carbon sequestration agent for climate change mitigation remains uncertain. We performed a meta-analysis of 91 published papers with 552 paired comparisons to obtain a central tendency of three main GHG fluxes (i.e., CO 2 , CH 4 , and N 2 O) in response to biochar application. Our results showed that biochar application significantly increased soil CO 2 fluxes by 22.14%, but decreased N 2 O fluxes by 30.92% and did not affect CH 4 fluxes. As a consequence, biochar application may significantly contribute to increased global warming potential (GWP) of total soil GHG fluxes due to the large stimulation of CO 2 fluxes. However, soil CO 2 fluxes were suppressed when biochar was added to fertilized soils, indicating that Accepted ArticleThis article is protected by copyright. All rights reserved. biochar application is unlikely to stimulate CO 2 fluxes in the agriculture sector, in which N fertilizer inputs are common. Responses of soil GHG fluxes mainly varied with biochar feedstock source and soil texture, and the pyrolysis temperature of biochar. Soil and biochar pH, biochar applied rate and latitude also influence soil GHG fluxes, but to a more limited extent.Our findings provide a scientific basis for developing more rational strategies towards widespread adoption of biochar as a soil amendment for climate change mitigation.
ESHG background document genetic testing and common disorders F Becker et al S10 European Journal of Human Genetics Knowledge of test Feasibility of screening procedures Suitable test or examination. Suitable test or examination. Test acceptable to the population. Entire screening procedure acceptable to the population. Case finding should be a continuing process and not 'once and for all' project. Screening should be a continuing process and should encompass all elements of screening procedures. Treatment for disease Interventions and follow-up Accepted treatment for patients with recognized disease. Interventions that have physical, psychological, and social net benefit available. Facilities for diagnosis and treatment available. Facilities for adequate surveillance, prevention, treatment, education, counselling, and social support available. Agreed on policy concerning whom to treat as patients. Consensus on accepted management for those with positive test results. Cost considerations Societal and health system issues Costs of case finding (including diagnosis and treatment of patients diagnosed) economically balanced in relation to possible expenditures on medical care as a whole. Costs should be balanced in economic, psychological, social, and medical terms and with health-care expenditures as a whole. Appropriate screening services accessible to the entire population, without adverse consequences for non-participants. Appropriate confidentiality procedures and antidiscrimination provisions for participants and non-participants. a Ethical, legal, and sociobehavioral issues are considered across all domains. Screening should be considered within a framework that recognizes fundamental human rights.
Increasing human land use for agriculture and housing leads to the loss of natural habitat and to widespread declines in wild bees. Bee foraging dynamics and fitness depend on the availability of resources in the surrounding landscape, but how precisely landscape related resource differences affect bee foraging patterns remains unclear. To investigate how landscape and its interaction with season and weather drive foraging and resource intake in social bees, we experimentally compared foraging activity, the allocation of foragers to different resources (pollen, nectar, and resin) and overall resource intake in the Australian stingless bee Tetragonula carbonaria (Apidae, Meliponini). Bee colonies were monitored in different seasons over two years. We compared foraging patterns and resource intake between the bees' natural habitat (forests) and two landscapes differently altered by humans (suburban gardens and agricultural macadamia plantations). We found foraging activity as well as pollen and nectar forager numbers to be highest in suburban gardens, intermediate in forests and low in plantations. Foraging patterns further differed between seasons, but seasonal variations strongly differed between landscapes. Sugar and pollen intake was low in plantations, but contrary with our predictions, it was even higher in gardens than in forests. In contrast, resin intake was similar across landscapes. Consequently, differences in resource availability between natural and altered landscapes strongly affect foraging patterns and thus resource intake in social bees. While agricultural monocultures largely reduce foraging success, suburban gardens can increase resource intake well above rates found in natural habitats of bees, indicating that human activities can both decrease and increase the availability of resources in a landscape and thus reduce or enhance bee fitness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.