Genetic variation is considered critical for allowing natural populations to adapt to their changing environment, and yet the effects of human disturbance on genetic variation in the wild are poorly understood. Different types of human disturbances may genetically impact natural populations in a predictable manner and so the aim of this study was to provide an overview of these changes using a quantitative literature review approach. I examined both allozyme and microsatellite estimates of genetic variation from peer-reviewed journals, using the mean number of alleles per locus and expected heterozygosity as standardized metrics. Populations within each study were categorized according to the type of human disturbance experienced (''hunting/harvest'', ''habitat fragmentation'', or ''pollution''), and taxon-specific, as well as time-and context-dependent disturbance effects were considered. I found that human disturbances are associated with weak, but consistent changes in neutral genetic variation within natural populations. The direction of change was dependent on the type of human disturbance experienced, with some forms of anthropogenic challenges consistently decreasing genetic variation from background patterns (e.g., habitat fragmentation), whereas others had no effect (e.g., hunting/ harvest) or even slightly increased genetic variation (e.g., pollution). These same measures appeared sensitive to both the time of origin and duration of the disturbance as well. This suggests that the presence or absence, strength, type, as well as the spatial and temporal scale of human disturbance experienced may warrant careful consideration when conservation management plans are formulated for natural populations, with particular attention paid to the effects of habitat fragmentation.