The reaction of the proton-transfer compound piperazine-1,4-diium pyrazine-2,3-dicarboxylate 4.5-hydrate, C4H12N2(2+)·C6H2N2O4(2-)·4.5H2O or (pipzH2)(pyzdc)·4.5H2O (pyzdcH2 is pyrazine-2,3-dicarboxylic acid and pipz is piperazine), (I), with Zn(NO3)2·6H2O and CoCl2·6H2O results in the formation of bis(piperazine-1,4-diium) bis(μ-pyrazine-2,3-dicarboxylato)-κ(3)N(1),O(2):O(3);κ(3)O(3):N(1),O(2)-bis[aqua(pyrazine-2,3-dicarboxylato-κ(2)N(1),O(2))zinc(II)] decahydrate, (C4H12N2)2[Zn2(C6H2N2O4)4(H2O)2]·10H2O or (pipzH2)2[Zn(pyzdc)2(H2O)]2·10H2O, (II), and catena-poly[piperazine-1,4-diium [cobalt(II)-bis(μ-pyrazine-2,3-dicarboxylato)-κ(3)N(1),O(2):O(3);κ(3)O(3):N(1),O(2)] hexahydrate], {(C4H12N2)[Co(C6H2N2O4)2]·6H2O}n or {(pipzH2)[Co(pyzdc)2]·6H2O}n, (III), respectively. In (I), pyzdcH2 is doubly deprotonated on reaction with piperazine as a base. Compound (II) crystallizes as a dimer, whereas compound (III) exists as a one-dimensional coordination polymer. In (II), two pyzdc(2-) groups chelate to each of the two Zn(II) atoms through a ring N atom and an O atom of the 2-carboxylate group. In one ligand, the adjacent 3-carboxylate group bridges to a neighbouring metal atom. A water molecule ligates in the sixth coordination site. The structure of (II) can be described as a commensurate superlattice due to an ordering in the hydrogen-bonded network. In (III), no water is coordinated to the metal atom and the coordination sphere is comprised of two N,O-chelates plus two bridging O atoms. A large number of hydrogen bonds are observed in all three compounds. These interactions, as well as π-π and C=O...π stacking interactions, play important structural roles.