A novel strategy of radical polymerization of sodium 4-styrenesulfonate on the surface of carbon black (CB) in the solid state was developed to prepare hydrophilic carbon nanoparticles (PNASS-CB). A high performance natural rubber latex (NRL)/PNASS-CB composite was produced by the latex compounding technique. Scanning electron microscope shows considerable improvement in the dispersion of PNASS-CB in rubber matrix. The lower degree of filler-filler networks and the stronger filler-rubber interaction of PNASS-CB in rubber matrix were confirmed by dynamic mechanical thermal analysis. Rheometric properties of NRL/PNASS-CB, like scorch time and optimum cure time, decreased. Tensile strength, tear strength, and elongation at break increased due to stronger interaction between the PNASS-CB and rubber matrix. Dynamic mechanical properties of the modified carbon nanoparticles further corroborated a significant contribution from the better dispersion and efficient load transfer of PNASS-CB on the static and dynamic mechanical properties of composites.