New kinds of inorganic–organic hybrid porous materials, metal–organic frameworks (MOFs), have shown great application potential in various fields, but their powdery nature limits their application to a certain extent. As a green and renewable biomass material in nature, cellulose fiber (CelF) has the advantages of biodegradability, recyclability and easy processing, and can be used as an excellent flexible substrate for MOFs. However, the efficient deposition of MOFs on CelF is still a great challenge for the development of this new material. Herein, polyaniline (PANI) and de-doped PANI (DPANI) with rich functional groups as a mediating layer was proposed to promote the in-situ growth and immobilization of some MOFs on CelF. The PANI (especially DPANI) layer greatly promoted the deposition of the four MOFs, and more encouragingly, significantly promoted the in-situ growth and nanocrystallization of MIL-100(Fe). MIL-100(Fe)@DPANI@CelF was selected as an adsorbent-photocatalyst to be used for the adsorptive-photocatalytic removal of ciprofloxacin (CIP) in water. The removal efficiency of CIP by MIL-100(Fe)@DPANI@CelF reached 82.78%, and the removal capacity of CIP was as high as 105.96 mg g−1. The study found that DPANI had a synergistic effect on both the in-situ growth of MIL-100(Fe) on CelF and the adsorption-photocatalysis of CIP in water. The universal platform of PANI-mediated in-situ growth and immobilization of MOFs on CelF constructed in this study widens the road for the development of MOF@CelF composites.