Using atomic-force microscopy and x-ray diffraction we show that perfluoropentacene (C 22 F 14 , PFP) forms long-range ordered, epitaxial films on KCl(100) and NaF(100) cleavage planes. On both substrates the films adopt the same crystalline bulk phase, but surprisingly exhibit quite different molecular orientations, being upright oriented on NaF and recumbent oriented on KCl. Accompanied thermal desorption spectroscopy measurements indicate the absence of a stabilized seed layer, like on metals, hence suggesting that in both cases the PFP films are stabilized by an electrostatic point-in-line relationship between the outermost fluorine atoms and the alkali cations of the alkali halide surfaces. Furthermore, the transparency of both substrates was utilized to perform detailed transmission UV/Vis spectroscopy and polarized optical microscopy measurements along well-defined crystallographic directions. From these data the orientation of transition dipole moments of the various optical excitations were experimentally determined and a directional anisotropic exciton coupling was observed, which is attributed to the asymmetric molecular packing motif within the (100) plane of the PFP crystal lattice.