The attraction of isothiocyanates as synthons and as cyclizing agents continues due to their diverse reactions and also due to their easy availability. It would not be out of place to mention that, in comparison to isocyanates (-N=C=O), their Sulphur analogues, isothiocyanates (-N=C=S), are less unpleasant and to some extent less hazardous. The use of isocyanates is drastically limited by the researchers [6] after December 3, 1984 which is the date of Bhopal Disaster held in Union carbide factory, Bhopal, Madhya Pradesh (India) due to the leakage of Methyl isocyanate (MIC) where thousands of people were died due to the toxic effect of MIC (Me-N=C=O). In the present study, a mixture of Phenyl isothiocyanate (2) and monocarboxylic acid (1), in the ratio of 1:1 and Phenyl isothiocyanate (2) and dicarboxylic acid (4) in the ratio of 2:1are taken for condensation reaction by heating at 160°-170°C for 15 minutesunder solvent free condition. Pyridine was used as a catalyst/ base in both the cases. The products obtained were monoanilides (3) and dianilides (5) of mono-and dicarboxylic acids respectively which were recrystallized from aqueous ethanol. Dicarboxylic acids gave unexpected results in some of the cases. For example, Phthalic acid produces N-phenylphthalimide irrespective of the molar ratio of the acid and Phenyl isothiocyanate whereas maleic acid produces neither mono-nor dianilides with Phenyl isothiocyanate under the present condition. A proper systematic investigation was carried out towards the condensation of Phenyl isothiocyanate with mono-and dicarboxylic acids.