The "open" type of prolamellar body in etiplasts was examined by electron microscopy to characterise its three-dimensional organisation. As in more compact forms of prolamellar body, its basic geometric unit is a tetrahedrally branched tubule. In the "open" type, these lie smoothly confluent with one another at the vertices of 5- and 6-membered rings which circumscribe the faces of three kinds of polyhedra: pentagonal dodecahedra (with 12 pentagonal faces), 14-hedra (2 opposite hexagonal faces joined by two circlets of six pentagonal faces), and 15-hedra (3 hexagonal and 12 pentagonal faces). These polyhedra join confluently in their turn, sharing faces with one another in at least one recognisable super-structure which accounts for the appearance of "open" prolamellar bodies in many ultrathin sections. In this organisation, columns of pentagonal dodecahedra are arranged at 120 degrees to one another in the x-y-plane of the lattice. They do not fill the plane but intersect so as to delimit voids in the form of hexagonally arranged 14-hedra (with hexagonal rings in the x-y-plane). Strata of this type alternate with strata made of face-sharing 15-hedra (with their hexagonal rings normal to x-y), which also delimit 14-hedra. The 14-hedra thus lie in register in the z-axis in hexagonally arranged columns, normal to the alternating strata. Other possible organisations cannot be excluded and local variations and dislocations certainly occur, but many micrographs that display elements of symmetry in "open" prolamellar bodies can be matched to thin slices through such a model. Its geometry is like that of the cages of water molecules in type IV (sensu Jeffrey = type III sensu O'Keeffe) clathrate-hydrates, point group P6/mmm, but about two orders of magnitude larger.