Several members of the RNase A superfamily are endowed with antitumor activity, showing selective cytotoxicity toward tumor cell lines. One of these is onconase, the smallest member of the superfamily, which at present is undergoing phase-III clinical trials as an antitumor drug. Our investigation focused on other interesting features of the enzyme, such as its unusually high denaturation temperature, its low catalytic activity, and its renal toxicity as a drug. We used differential scanning calorimetry, circular dichroism, fluorescence measurements, and limited proteolysis to investigate the molecular determinants of the stability of onconase and of a mutant, (M23L)-ONC, which is catalytically more active than the wild-type enzyme, and fully active as an antitumor agent. The determination of the main thermodynamic parameters of the protein led to the conclusion that onconase is an unusually stable protein. This was confirmed by its resistance to proteolysis. On the basis of this analysis and on a comparative analysis of the (M23L)-ONC variant of the protein, which is less stable and more sensitive to proteolysis, a model was constructed in line with available data. This model supports a satisfactory hypothesis of the molecular basis of onconase stability and low-catalytic activity.
The effects of temperature and SDS on the three-dimensional organization and secondary structure of beta-glycosidase from the thermophilic archaeon Sulfolobus solfataricus were investigated by CD, IR spectroscopy and differential scanning calorimetry. CD spectra in the near UV region showed that the detergent caused a remarkable change in the protein tertiary structure, and far-UV CD analysis revealed only a slight effect on secondary structure. Infrared spectroscopy showed that low concentrations of the detergent (up to 0.02%) induced slight changes in the enzyme secondary structure, whereas high concentrations caused the alpha-helix content to increase at high temperatures and prevented protein aggregation.
Telomeres are DNA-protein structures at the ends of eukaryotic chromosomes, the DNA of which comprise noncoding repeats of guanine-rich sequences. Telomeric DNA plays a fundamental role in protecting the cell from recombination and degradation. Telomeric sequences can form quadruplex structures stabilized by guanine quartets. These structures can be constructed from one, two, or four oligonucleotidic strands. Here, we report the thermodynamic characterization of the stability, analyzed by differential scanning calorimetry, of three DNA quadruplexes of different molecularity, all containing four G-tetrads. The conformational properties of these quadruple helices were studied by circular dichroism. The investigated oligomers form well-defined G-quadruplex structures in the presence of sodium ions. Two have the truncated telomeric sequence from Oxytricha, d(TGGGGT) and d(GGGGTTTTGGGG), which form a tetramolecular and bimolecular quadruplex, respectively. The third sequence, d(GGGGTTGGGGTGTGGGGTTGGGG) was designed to form a unimolecular quadruplex. The thermodynamic parameters of these quadruplexes have been determined. The tetramolecular structure is thermodynamically more stable than the bimolecular one, which, in turn, is more stable than the unimolecular one. The experimental data were discussed in light of the molecular-modeling study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.