Summary
This study demonstrated a biotechnological approach for simultaneous production of low‐cost H2, liquid biofuels, and polyhydroxyalkanoates (PHAs) by solventogenic bacterium (Clostridium beijerinckii) from renewable industrial wastes such as molasses and crude glycerol. C beijerinckii ASU10 (KF372577) exhibited considerable performance for hydrogen production of 5.1 ± 0.84 and 11 ± 0.44 mL H2 h−1 on glycerol and sugarcane molasses, respectively. The total acetone‐butanol‐ethanol (ABE) generation from glycerol and molasses was 9.334 ± 2.98 and 10.831 ± 4.1 g L−1, respectively. ABE productivity (g L−1 h−1) was 0.0486 and 0.0564 with a yield rate (g g−1) up to 0.508 and 0.493 from glycerol and molasses fermentation, respectively. The PHA yields from glycerol and sugarcane molasses were 84.37% and 37.97% of the dried bacterial biomass, respectively. Additionally, the ultrathin section of C beijerinckii ASU10 showed that PHA granules were accumulated more densely on glycerol than molasses. Gas chromatography–mass spectrometry (GC‐MS) analysis confirmed that the PHAs obtained from molasses fermentation included 3‐hydroxybutyrate (47.3%) and 3‐hydroxyoctanoate (52.7%) as the main constituents. Meanwhile, 3‐hydroxybutyrate represented the sole monomer of PHA produced from glycerol fermentation. This study demonstrated that C beijerinckii ASU10 (KF372577) is a potent strain for low‐cost PHA production depending on its high potential to produce high‐energy biofuel and other valuable compounds from utilization of organic waste materials.