The biomass energy source has been a promising renewable alternative for fossil fuels and their inevitable environmental impacts on Earth's life, from which the greenhouse gas (GHG) emissions and the environment pollution followed by consequent ecosystem imbalance are major concerns. Biofuels and bioplastics are well-known examples of renewable products obtained from biomass that has shown increasing potential to succeed the conventional fuels and plastics. However, biofuels and especially bioplastics have faced their main hindrance in their uncompetitive costs. Furthermore, the "drop-in" plastics are the market leaders, which reduce the carbon footprint but continue to state the biodegradability concern attributed to most of plastic products, the packaging sector. This chapter outlines the common features and feedstocks of biofuels and bioplastics aiming to support their associated production set toward the bio-based and biodegradable poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs) as promising models with fast-growing production capacity forecasted for the next years and biodegradable solution for short-lived and disposable plastic materials.
β-fructofuranosidase (invertase) and β-D-fructosyltransferase (FTase) are enzymes used in industrial processes to hydrolyze sucrose aiming to produce inverted sugar syrup or fructooligosaccharides. In this work, a black Aspergillus sp. PC-4 was selected among six filamentous fungi isolated from canned peach syrup which were initially screened for invertase production. Cultivations with pure carbon sources showed that invertase and FTase were produced from glucose and sucrose, but high levels were also obtained from raffinose and inulin. Pineapple crown was the best complex carbon source for invertase (6.71 U/mL after 3 days of cultivation) and FTase production (14.60 U/mL after 5 days of cultivation). Yeast extract and ammonium chloride nitrogen sources provided higher production of invertase (6.80 U/mL and 6.30 U/mL, respectively), whereas ammonium nitrate and soybean protein were the best nitrogen sources for FTase production (24.00 U/mL and 24.90 U/mL, respectively). Fermentation parameters for invertase using yeast extract were YP/S = 536.85 U/g and PP = 1.49 U/g/h. FTase production showed values of YP/S = 2,627.93 U/g and PP = 4.4 U/h using soybean protein. The screening for best culture conditions showed an increase of invertase production values by 5.10-fold after 96 h cultivation compared to initial experiments (fungi bioprospection), while FTase production increased by 14.60-fold (44.40 U/mL) after 168 h cultivation. A. carbonarius PC-4 is a new promising strain for invertase and FTase production from low cost carbon sources, whose synthesized enzymes are suitable for the production of inverted sugar, fructose syrups, and fructooligosaccharides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.