2022
DOI: 10.1080/15230406.2021.2013944
|View full text |Cite
|
Sign up to set email alerts
|

Polyline simplification based on the artificial neural network with constraints of generalization knowledge

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 17 publications
(5 citation statements)
references
References 36 publications
0
4
0
1
Order By: Relevance
“…Finally, through an analysis of the clusters, key nodes, and highly cited articles, we found that key technologies such as 'Artificial Neural Network' [78,89,92], 'Self Organizing Map' [87,[93][94][95][96][97][98], 'Back Propagation Neural Network' [93,[99][100][101], 'Particle Swarm Optimization' [102], 'Radial Basis Function Networks' [102], 'Convolutional Neural Network' [81,90,101,[103][104][105][106][107][108], 'Graph Neural Network' [88,[109][110][111][112][113][114], 'Support Vector Machine' [79,99], etc., are widely applied in various domains of cartography. Firstly, these technologies have automated cartographic workflows in map generalization [104,115], including polyline simplification [78,92,114,115], river network generalization [87,98,99], selective omission of road networks [79,…”
Section: Cluster #1 and #3-deep Learning And Machine Learningmentioning
confidence: 99%
“…Finally, through an analysis of the clusters, key nodes, and highly cited articles, we found that key technologies such as 'Artificial Neural Network' [78,89,92], 'Self Organizing Map' [87,[93][94][95][96][97][98], 'Back Propagation Neural Network' [93,[99][100][101], 'Particle Swarm Optimization' [102], 'Radial Basis Function Networks' [102], 'Convolutional Neural Network' [81,90,101,[103][104][105][106][107][108], 'Graph Neural Network' [88,[109][110][111][112][113][114], 'Support Vector Machine' [79,99], etc., are widely applied in various domains of cartography. Firstly, these technologies have automated cartographic workflows in map generalization [104,115], including polyline simplification [78,92,114,115], river network generalization [87,98,99], selective omission of road networks [79,…”
Section: Cluster #1 and #3-deep Learning And Machine Learningmentioning
confidence: 99%
“…As extensive data are collected, an ANN's parameters could be changed to achieve better outcomes. 85 Most of the selected studies used the BPNN algorithm when adapting an ANN to their data sets as M. Ghasemi-Varnamkhasti et al 53 did when classifying different cheese classes with very good accuracies. Hereby, the BPNN algorithm was more frequently considered.…”
Section: Recent Applications Using E-noses In Food Analysismentioning
confidence: 99%
“…Todavia, os operadores que são considerados importantes são definidos conforme a visão e o entendimento do analista acerca do contexto global, inserindo a generalização em um processo subjetivo e holístico, tornando a sua automatização um desafio (MCMASTE; SHEA, 1992). As estratégias atuais, em grande parte, buscam integrar o conhecimento cartográfico em tarefas automatizadas e estão relacionadas com aspectos gráficos, como a análise de características geométricas (FORBERG, 2007;BILJECKI et al, 2016, DU et al, 2022, a designação de símbolos cartográficos (BARTONĚK; ANDĚLOVÁ, 2022) e definição de padrões (DYER et al, 2022), relacionando-se com três aspectos: 1) Critérios e especificações técnicas atuais (normatizações, padrões e especificações técnicas); 2) Análise das características geométricas e semânticas do conjunto de dados que integra o BDG primário e; 3) Definição de regras automáticas de generalização cartográfica digital materializadas por linguagem de programação. Esses tópicos devem ser estudados não apenas para analisar as regras de generalização cartográfica implementadas, mas para avaliar o sucesso do processo em uma base de dados geoespacial.…”
Section: Elaboração: Os Autores (2022)unclassified