There remains several challenges that are encountered in the task of extracting buildings from aerial imagery using convolutional neural networks (CNNs). First, the tremendous complexity of existing building extraction networks impedes their practical application. In addition, it is arduous for networks to sufficiently utilize the various building features in different images. To address these challenges, we propose an efficient network called MSL-Net that focuses on both multiscale building features and multilevel image features. First, we use depthwise separable convolution (DSC) to significantly reduce the network complexity, and then we embed a group normalization (GN) layer in the inverted residual structure to alleviate network performance degradation. Furthermore, we extract multiscale building features through an atrous spatial pyramid pooling (ASPP) module and apply long skip connections to establish long-distance dependence to fuse features at different levels of the given image. Finally, we add a deformable convolution network layer before the pixel classification step to enhance the feature extraction capability of MSL-Net for buildings with irregular shapes. The experimental results obtained on three publicly available datasets demonstrate that our proposed method achieves state-of-the-art accuracy with a faster inference speed than that of competing approaches. Specifically, the proposed MSL-Net achieves 90.4%, 81.1% and 70.9% intersection over union (IoU) values on the WHU Building Aerial Imagery dataset, Inria Aerial Image Labeling dataset and Massachusetts Buildings dataset, respectively, with an inference speed of 101.4 frames per second (FPS) for an input image of size 3 × 512 × 512 on an NVIDIA RTX 3090 GPU. With an excellent tradeoff between accuracy and speed, our proposed MSL-Net may hold great promise for use in building extraction tasks.
Detecting buildings, segmenting building footprints, and extracting building edges from high-resolution remote sensing images are vital in applications such as urban planning, change detection, smart cities, and map-making and updating. The tasks of building detection, footprint segmentation, and edge extraction affect each other to a certain extent. However, most previous works have focused on one of these three tasks and have lacked a multitask learning framework that can simultaneously solve the tasks of building detection, footprint segmentation and edge extraction, making it difficult to obtain smooth and complete buildings. This study proposes a novel multiscale and multitask deep learning framework to consider the dependencies among building detection, footprint segmentation, and edge extraction while completing all three tasks. In addition, a multitask feature fusion module is introduced into the deep learning framework to increase the robustness of feature extraction. A multitask loss function is also introduced to balance the training losses among the various tasks to obtain the best training results. Finally, the proposed method is applied to open-source building datasets and large-scale high-resolution remote sensing images and compared with other advanced building extraction methods. To verify the effectiveness of multitask learning, the performance of multitask learning and single-task training is compared in ablation experiments. The experimental results show that the proposed method has certain advantages over other methods and that multitask learning can effectively improve single-task performance.
Convolutional neural networks (CNNs) perform well in tasks of segmenting buildings from remote sensing images. However, the intraclass heterogeneity of buildings is high in images, while the interclass homogeneity between buildings and other nonbuilding objects is low. This leads to an inaccurate distinction between buildings and complex backgrounds. To overcome this challenge, we propose an Attentional Feature Learning Network (AFL-Net) that can accurately extract buildings from remote sensing images. We designed an attentional multiscale feature fusion (AMFF) module and a shape feature refinement (SFR) module to improve building recognition accuracy in complex environments. The AMFF module adaptively adjusts the weights of multi-scale features through the attention mechanism, which enhances the global perception and ensures the integrity of building segmentation results. The SFR module captures the shape features of the buildings, which enhances the network capability for identifying the area between building edges and surrounding nonbuilding objects and reduces the over-segmentation of buildings. An ablation study was conducted with both qualitative and quantitative analyses, verifying the effectiveness of the AMFF and SFR modules. The proposed AFL-Net achieved 91.37, 82.10, 73.27, and 79.81% intersection over union (IoU) values on the WHU Building Aerial Imagery, Inria Aerial Image Labeling, Massachusetts Buildings, and Building Instances of Typical Cities in China datasets, respectively. Thus, the AFL-Net offers the prospect of application for successful extraction of buildings from remote sensing images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.