To date, trial and error strategies guided by intuition have dominated the identification of materials suitable for a specific application. We are entering a data-rich, modelling-driven era where such Edisonian approaches are gradually being replaced by rational strategies, which couple predictions from advanced computational screening with targeted experimental synthesis and validation. Here, consistent with this emerging paradigm, we propose a strategy of hierarchical modelling with successive downselection stages to accelerate the identification of polymer dielectrics that have the potential to surpass 'standard' materials for a given application. Successful synthesis and testing of some of the most promising identified polymers and the measured attractive dielectric properties (which are in quantitative agreement with predictions) strongly supports the proposed approach to material selection.