This review is based on a lecture that has been presented over the past several years by one of us (GBB) in connection with certain well-established short courses. Although the major water-soluble non-polyelectrolytes are covered briefly in this review, the major emphasis is placed on well-studied and either commercially available polyelectrolyte monomers or such monomers which have the potential for commercial development.The latter judgment is based on availability of raw materials, monomer and polymer yields, and/or quality of derivable polymers or copolymer. In many cases, only the monomers are emphasized, since methods for their polymerization generally parallel each other, all being predominantly initiated and polymerized via free radical mechanisms. No distinction is generally made among the several polymerization techniques such as aqueous or other solution processes, suspension or emulsion processes. In many cases all types have been studied. In most of the others, success in the application of the several techniques to the polymerization process can reasonably be predicted.Organic compounds having hydrophilic groups are soluble in water provided the hydrophobic-hydrophilic balance is favorable. Alcohols of low molecular weight are soluble in water; however, those of higher molecular weight are no longer soluble. The same principles apply to polymers. Table I includes the more common functional groups which impart water-solubility to organic compounds as well as to polymers.
Non-polyelectrolytesAside from the naturally occurring water-soluble polysaccharides or their synthetically modified derivatives, the major contributors to the non-polyelectrolyte group of water-soluble polymers are: poly(acrylamide), poly(acrylic) or (methacrylic acids), poly(ethylene oxides), poly(methyl vinyl ether) and poly(vinyl alcohols).
Polyacrylamide (PAM). Acrylamide polymerizes easily in aqueous solution inpresence of a wide variety of free-radical initiators (J_). Many added salts affect polymerization rate and molecular weight. Often, commercially produced poly(acrylamides) may contain a fraction that appears to be insoluble in water, a property which presents a problem for many uses. Much attention