Background
A major goal of phylogenetic systematics is to understand both the patterns of diversification and the processes by which these patterns are formed. Few studies have focused on the ancient, species-rich Magnoliales clade and its diversification pattern. Within Magnoliales, the pantropically distributed Annonaceae are by far the most genus-rich and species-rich family-level clade, with c. 110 genera and c. 2,400 species. We investigated the diversification patterns across Annonaceae and identified traits that show varied associations with diversification rates using a time-calibrated phylogeny of 835 species (34.6% sampling) and 11,211 aligned bases from eight regions of the plastid genome (rbcL, matK, ndhF, psbA-trnH, trnL-F, atpB-rbcL, trnS-G, and ycf1). Two hypotheses that might explain patterns of diversification—the ‘museum model’ and heterogeneous diversification rates—are also evaluated.
Results
Twelve rate shifts were identified using BAMM: in Annona, Artabotrys, Asimina, Drepananthus, Duguetia, Goniothalamus, Guatteria, Uvaria, Xylopia, the tribes Miliuseae and Malmeeae, and the Desmos-Dasymaschalon-Friesodielsia-Monanthotaxis clade (which collectively account for over 80% of the total species richness in the family). TurboMEDUSA and method-of-moments estimator analyses showed largely congruent results. A positive relationship between species richness and diversification rate is revealed using PGLS. We further explore the possible role of selected traits (habit, pollinator trapping, floral sex expression, pollen dispersal unit, anther septation, and seed dispersal unit) in shaping diversification patterns, based on inferences of BiSSE, MuSSE, HiSSE, and FiSSE analyses. Our results suggest that the liana habit, the presence of circadian pollinator trapping, androdioecy, and the dispersal of seeds as single-seeded monocarp fragments are closely correlated with higher diversification rates; pollen aggregation and anther septation, in contrast, are associated with lower diversification rates.
Conclusion
Our results show that the high species richness in Annonaceae is likely the result of recent increased diversification rather than the steady accumulation of species via the ‘museum model’. BAMM, turboMEDUSA, and the method-of-moments estimator all indicate heterogeneity in diversification rates across the phylogeny, with different traits associated with shifts in diversification rates in different Annonaceae clades.