The major challenge of tissue regeneration is to develop three dimensional scaffolds with suitable properties which would mimic the natural extracellular matrix to induce the adhesion, proliferation, and differentiation of cells. Several materials have been used for the preparation of the scaffolds for bone regeneration. In this study, novel ethyl cellulose-grafted-poly (ɛ-caprolactone) (EC-g-PCL)/alginate scaffolds with different contents of nano-hydroxyapatite were prepared by combining electrospinning and freeze-drying methods in order to provide nanofibrous/macroporous structures with good mechanical properties. For this aim, EC-g-PCL nanofibers were obtained with electrospinning, embedded layer-by-layer in alginate solutions containing nano-hydroxyapatite particles, and finally, these constructions were freeze-dried. The scaffolds possess highly porous structures with interconnected pore network. The swelling, porosity, and degradation characteristics of the EC-g-PCL/alginate scaffolds were decreased with the increase in nano-hydroxyapatite contents, whereas increases in the in-vitro biomineralization and mechanical strength were observed as the nano-hydroxyapatite content was increased. The cell response to EC-g-PCL/alginate scaffolds with/or without nano-hydroxyapatite was investigated using human dental pulp stem cells (hDPSCs). hDPSCs displayed a high adhesion, proliferation, and differentiation on nano-hydroxyapatite-incorporated EC-g-PCL/alginate scaffolds compared to pristine EC-g-PCL/alginate scaffold. Overall, these results suggested that the EC-g-PCL/alginate-HA scaffolds might have potential applications in bone tissue engineering.