BACKGROUND: The major challenge of tissue engineering is to develop constructions with suitable properties which would mimic the natural extracellular matrix to induce the proliferation and differentiation of cells. Poly(e-caprolactone)poly(ethylene glycol)-poly(e-caprolactone) (PCL-PEG-PCL, PCEC), chitosan (CS), nano-silica (n-SiO 2) and nano-hydroxyapatite (n-HA) are biomaterials successfully applied for the preparation of 3D structures appropriate for tissue engineering. METHODS: We evaluated the effect of n-HA and n-SiO 2 incorporated PCEC-CS nanofibers on physical properties and osteogenic differentiation of human dental pulp stem cells (hDPSCs). Fourier transform infrared spectroscopy, field emission scanning electron microscope, transmission electron microscope, thermogravimetric analysis, contact angle and mechanical test were applied to evaluate the physicochemical properties of nanofibers. Cell adhesion and proliferation of hDPSCs and their osteoblastic differentiation on nanofibers were assessed using MTT assay, DAPI staining, alizarin red S staining, and QRT-PCR assay. RESULTS: All the samples demonstrated bead-less morphologies with an average diameter in the range of 190-260 nm. The mechanical test studies showed that scaffolds incorporated with n-HA had a higher tensile strength than ones incorporated with n-SiO 2. While the hydrophilicity of n-SiO 2 incorporated PCEC-CS nanofibers was higher than that of samples enriched with n-HA. Cell adhesion and proliferation studies showed that n-HA incorporated nanofibers were slightly superior to n-SiO 2 incorporated ones. Alizarin red S staining and QRT-PCR analysis confirmed the osteogenic differentiation of hDPSCs on PCEC-CS nanofibers incorporated with n-HA and n-SiO 2. CONCLUSION: Compared to other groups, PCEC-CS nanofibers incorporated with 15 wt% n-HA were able to support more cell adhesion and differentiation, thus are better candidates for bone tissue engineering applications.
Presently, tissue engineering has been developed as an effective option in the restoration and repair of tissue defects. One of the tissue engineering strategies is to use both biodegradable scaffolds and stimulating factors for enhancing cell responses. In this study, the effect of zeolite was assessed on cell viability, proliferation, osteo/odontogenic differentiation, and mineralization of human dental pulp stem cells (hDPSCs) cultured on poly (e-coprolactone)poly (ethylene glycol)-poly (e-caprolactone) (PCL-PEG-PCL) nanofibers. For this purpose, PCL-PEG-PCL nanofibrous scaffolds incorporated with zeolite were prepared via electrospinning. Both PCL-PEG-PCL and PCL-PEG-PCL/Zeolite nanofibrous scaffolds revealed bead-less constructions with average diameters of 430 nm and 437 nm, respectively. HDPSCs were transferred to PCL-PEG-PCL nanofibrous scaffolds containing zeolite nanoparticles. Cell adhesion and proliferation of hDPSCs and their osteo/odontogenic differentiation on these scaffolds were evaluated using MTT assay, Alizarin red S staining, and qRT-PCR assay. The results revealed that PCL-PEG-PCL/Zeolite nanofibrous scaffolds could support better cell adhesion, proliferation and osteogenic differentiation of hDPSCs and as such is expected to be a promising scaffold for bone tissue engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.