Pancreatic cancer remains one of the most lethal malignancies, with conventional treatment options providing limited efficacy. Recent advancements in immunotherapy have offered new hope, yet the unique tumor microenvironment (TME) of pancreatic cancer poses significant challenges to its successful application. This review explores the transformative impact of single-cell technology on the understanding and treatment of pancreatic cancer. By enabling high-resolution analysis of cellular heterogeneity within the TME, single-cell approaches have elucidated the complex interplay between various immune and tumor cell populations. These insights have led to the identification of predictive biomarkers and the development of innovative, personalized immunotherapeutic strategies. The review discusses the role of single-cell technology in dissecting the intricate immune landscape of pancreatic cancer, highlighting the discovery of T cell exhaustion profiles and macrophage polarization states that influence treatment response. Moreover, it outlines the potential of single-cell data in guiding the selection of immunotherapy drugs and optimizing treatment plans. The review also addresses the challenges and prospects of translating these single-cell-based innovations into clinical practice, emphasizing the need for interdisciplinary research and the integration of artificial intelligence to overcome current limitations. Ultimately, the review underscores the promise of single-cell technology in driving therapeutic strategy innovation and improving patient outcomes in the battle against pancreatic cancer.